Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics.

نویسندگان

  • Chong-Sheng Chen
  • Jack T Lin
  • Kendrick A Goss
  • You-ai He
  • James R Halpert
  • David J Waxman
چکیده

Cyclophosphamide (CPA) and ifosfamide (IFA) are oxazaphosphorine anticancer prodrugs metabolized by two alternative cytochrome P450 (P450) pathways, drug activation by 4-hydroxylation and drug inactivation by N-dechloroethylation, which generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde. CPA and IFA metabolism catalyzed by P450s 2B1, 2B4, 2B5, and seven site-specific 2B1 mutants was studied in a reconstituted Escherichia coli expression system to identify residues that contribute to the unique activities and substrate specificities of these enzymes. The catalytic efficiency of CPA 4-hydroxylation by rat P450 2B1 was 10- to 35-fold higher than that of rabbit P450 2B4 or 2B5. With IFA, approximately 50% of metabolism proceeded via N-dechloroethylation for 2B1 and 2B4, whereas CPA N-dechloroethylation corresponded to only approximately 3% of total metabolism (2B1) or was absent (2B4, 2B5). Improved catalytic efficiency of CPA and IFA 4-hydroxylation was obtained upon substitution of 2B1 Ile-114 by Val, and replacement of Val-363 by Leu or Ile selectively suppressed CPA N-dechloroethylation >or=90%. P450 2B1-V367A, containing the Ala replacement found in 2B5, exhibited only approximately 10% of wild-type 2B1 activity for both substrates. Canine P450 2B11, which has Val-114, Leu-363, and Val-367, was therefore predicted to be a regioselective CPA 4-hydroxylase with high catalytic efficiency. Indeed, P450 2B11 was 7- to 8-fold more active as a CPA and IFA 4-hydroxylase than 2B1, exhibited a highly desirable low K(m) (80-160 microM), and catalyzed no CPA N-dechloroethylation. These findings provide insight into the role of specific P450 2B residues in oxazaphosphorine metabolism and pave the way for gene therapeutic applications using P450 enzymes with improved catalytic activity toward these anticancer prodrug substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.

The anticancer oxazaphosphorine prodrugs cyclophosphamide and ifosfamide are activated in human liver by a 4-hydroxylation reaction catalyzed by multiple cytochrome P450 (CYP) enzymes. In the present study, we used a cultured human hepatocyte model to identify possible inducers of the CYP-catalyzed activation of these two anticancer prodrugs. Treatment of primary cultures of human hepatocytes w...

متن کامل

Activation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants.

Cyclophosphamide (CPA) and ifosfamide (IFA) are widely used anticancer agents that require metabolic activation by cytochrome P450 (CYP) enzymes. While 4-hydroxylation yields DNA-alkylating and cytotoxic metabolites, N-dechloroethylation results in the generation of neuro- and nephrotoxic byproducts. Gene-directed enzyme prodrug therapies (GDEPT) have been suggested to facilitate local CPA and ...

متن کامل

Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide.

Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 m...

متن کامل

Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide.

Cytochrome P450 2B1 has been subjected to directed evolution to investigate the role of amino acid residues outside of the active site and to engineer novel, more active P450 catalysts. A high throughput screening system was developed to measure H(2)O(2)-supported oxidation of the marker fluorogenic substrate 7-ethoxy-4-trifluoromethylcoumarin (7-EFC). Random mutagenesis by error-prone polymera...

متن کامل

Enzyme-catalyzed activation of anticancer prodrugs.

The rationale fo the development of prodrugs relies upon delivery of higher concentrations of a drug to target cells compared to administration of the drug itself. In the last decades, numerous prodrugs that are enzymatically activated into anti-cancer agents have been developed. This review describes the most important enzymes involved in prodrug activation notably with respect to tissue distr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2004